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Thermodynamics and collapse of self-gravitating Brownian particles inD dimensions

Clément Sire* and Pierre-Henri Chavanis†

Laboratoire de Physique Quantique (UMR 5626 du CNRS), Universite´ Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, Fran
~Received 17 June 2002; published 24 October 2002!

We address the thermodynamics and the collapse of a self-gravitating gas of Brownian particles inD
dimensions, in both canonical and microcanonical ensembles. We study the equilibrium density profile and
phase diagram of isothermal spheres and, for 2,D,10, determine the onset of instability in the series of
equilibria. We also study the dynamics of self-gravitating Brownian particles in a high friction limit leading to
the Smoluchowski-Poisson system. Self-similar solutions describing the collapse are investigated analytically
and numerically. In the canonical ensemble~fixed temperature!, we derive the analytic form of the density
scaling profile which decays asf (x);x2a, with a52. In the microcanonical ensemble~fixed energy!, we
show thatf decays asf (x);x2amax, whereamax is a nontrivial exponent. We derive exact expansions foramax

and f in the limit of largeD. Finally, we solve the problem inD52, which displays rather rich and peculiar
features with, in particular, the formation of a Dirac peak in the density profile.

DOI: 10.1103/PhysRevE.66.046133 PACS number~s!: 05.90.1m, 64.60.2i, 47.20.2k, 05.70.2a
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I. INTRODUCTION

In an earlier paper@1#, we studied a model of self
gravitating Brownian particles confined within a thre
dimensional spherical box. We considered a high frict
limit in which the equations of the problem reduce to t
Smoluchowski-Poisson system with appropriate constra
ensuring the conservation of energy~in the microcanonical
ensemble! or temperature~in the canonical ensemble! @2#.
The equilibrium states~maximum entropy states! correspond
to isothermal configurations which are known to exist on
above a critical energy or above a critical temperature~see,
e.g., Ref.@3#!. When no hydrostatic equilibrium exists, w
found that the system generates a finite time singularity~i.e.,
the central density becomes infinite in a finite time! and we
derived self-similar solutions describing the collapse. T
study was performed both in the microcanonical and can
cal ensembles, with emphasize on the inequivalence of
sembles for such a nonextensive system. In the canon
ensemble, we showed that the scaling exponent for the
sity is a52 and we determined the invariant profilef (x),
satisfyingf (x);x2a for x→1`, analytically. In the micro-
canonical ensemble, the scaling exponenta.2.21 . . . and
the corresponding invariant profilef (x) were determined nu
merically. These values ofa are close to those found b
other authors@4–7#, using different kinetic equations. Thi
agreement may be coincidental but it may also sugge
kind of universality in the collapse regime.

In this paper, we propose to extend our previous anal
to a space of arbitrary dimensionD. The interest of this
extension is twofold. First, we shall consider an infinite
mension limitD→1` in which the problem can be solve
analytically. In particular, it is possible to determine the sc
ing exponenta(D) and the profilef (x,D) in the microca-
nonical ensemble by a systematic expansion procedur
powers of D21 ~Sec. III D!, while the canonical value is
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always a52 and the profile can be calculated exactly f
any dimension~Sec. III C!. We show that, already up to or
der O(D22), the results of the largeD expansion agree re
markably well with those found numerically forD53.
Moreover, we show that the nature of the problem change
two particular dimensionsD52 andD510. In Sec. II, we
compute the equilibrium phase diagram as a function of
dimension. For 2,D,10, theT-E curve has a spiral shap
as in three dimensions~3D!. For D.10 andD,2, theT-E
curve is monotonic. The dimensionD52 is critical and re-
quires particular attention that is given in Sec. IV. We sh
that forD52 the system generates a Dirac peak~containing
a finite fraction of mass! for T,Tc5GM/4 in the canonical
ensemble while forD.2, the central singularity contains n
mass at the collapse time~but a Dirac peak is always forme
in the post-collapse regime!. The caseD52 has interest in
theoretical physics regarding 2D gravity@8# and string theory
@9# ~in connection with the Liouville field theory!. It has also
applications in the physics of random surfaces@10# and ran-
dom potentials@11#, 2D turbulence@12# and chemotaxis@13#
~for bacterial populations!. Finally, the dynamical equation
considered in this paper and in Ref.@2# are receiving a grow-
ing interest from mathematicians who established rigor
results concerning the existence and unicity of solutions
an arbitrary domain shape without specific symmetry.
refer to the papers of Rosier@14# and Biler and Nadzieja
@15#, and references therein, for the connection of our stu
with mathematical results.

II. EQUILIBRIUM STRUCTURE OF ISOTHERMAL
SPHERES IN DIMENSION D

A. The maximum entropy principle

Consider a system of particles with massm interacting via
Newtonian gravity in a space of dimensionD. The particles
are enclosed within a box of radiusR so as to prevent evapo
ration and make a statistical approach rigorous. Letf (r ,v,t)
denote the distribution function of the system, i.
f (r ,v,t)dDrdDv gives the mass of particles whose positi
©2002 The American Physical Society33-1
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and velocity are in the cell (r ,v;r1dDr ,v1dDv) at time t.
The integral of f over the velocity determines the spati
density

r5E f dDv. ~1!

The total mass of the configuration is

M5E r dDr . ~2!

In the mean-field approximation, the total energy of the s
tem can be expressed as

E5
1

2E f v2 dDrdDv1
1

2E rF dDr5K1W, ~3!

whereK is the kinetic energy andW the potential energy. The
gravitational potentialF is related to the density by th
Newton-Poisson equation

DF5SDGr, ~4!

whereSD is the surface of a unit sphere in aD-dimensional
space andG is the constant of gravity. Finally, we introduc
the Boltzmann entropy

S52E f lnf dDrdDv, ~5!

and the free energy~more precisely the Massieu function!

J5S2bE, ~6!

where b51/T is the inverse temperature. If the system
isolated, the equilibrium state maximizes the entropyS at
fixed energyE and massM ~microcanonical description!.
Alternatively, if the system is in contact with a heat bath th
maintains its temperature fixed, the equilibrium state ma
mizes the free energyJ at fixed massM and temperatureT
~canonical description!. It can be shown that for systems in
teracting via a long-range potential such as gravity, t
mean-field description isexact in a suitable thermodynami
limit ~see Sec. II D!.

To solve this variational problem, we shall proceed in tw
steps. We first maximizeS ~J! at fixed M, E, ~T! and r(r ).
This yields the Maxwell distribution

f 5
1

~2pT!D/2
r~r !e2v2/2T. ~7!

It is now possible to express the energy and the entrop
terms ofr(r ) andT as

E5
D

2
MT1

1

2E rFdDr , ~8!

S5
D

2
M lnT2E r lnrdDr , ~9!
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where we have omitted unimportant constant terms in
entropy~9!. The entropy and the free energy are now fun
tionals ofr(r ) and we consider their maximization at fixe
energy or fixed temperature. Introducing Lagrange multip
ers to satisfy the constraints, the critical points ofS ~at fixed
E and M ) or J ~at fixed T and M ) are given by the Boltz-
mann distribution~see, e.g., Refs.@16,17# for more details!,

r5Ae2bF. ~10!

Then, the equilibrium state is obtained by solving t
Boltzmann-Poisson equation

DF5SDGAe2bF, ~11!

and relating the Lagrange multipliers to the appropriate c
straints. Note that a similar variational problem occurs in
context of two-dimensional turbulence (D52) to character-
ize large-scale vortices considered as maximum entr
structures@2,18–21#. The analogy between the statistical m
chanics of two-dimensional vortices and stellar systems
discussed in Ref.@22#.

It is easy to show that there is no global maximum
entropy at fixed mass and energy forD.2 ~see Appendix
A!. We can make the entropy diverge to1` by approaching
an arbitrarily small fraction of particles in the core (Mcore
!M ) so that the potential energy goes to2`. Since the
total energy is conserved, the temperature must rise to1`
and this leads to a divergence of the entropy to1`. Note
that if we collapseall particles in the core, the entropy woul
diverge to2`. Therefore, the formation of a Dirac peak
not thermodynamically favorable in the microcanonical e
semble. ForD52, there exists a global entropy maximu
for all energies. On the other hand, there is no global ma
mum of free energy at fixed mass and temperature forD
.2 and if T,Tc5GM/4 for D52 ~see Appendix B!. We
can make the free energyJ diverge to1` by collapsing all
particles atr 50. Therefore, a canonical system is expec
to form a Dirac peak. ForD52 andT.Tc , there exists a
global maximum of free energy. ForD,2, there exists a
global maximum of entropy and free energy for all acce
sible values of energy and temperature. We refer to R
@23,24# for a rigorous proof of these results. When no glob
maxima of entropy or free energy exist, we can neverthe
look for local maxima since they correspond to metasta
states that can be relevant for the considered time scales
course, the critical points of entropy at fixedE andM are the
same as the critical points of free energy at fixedT and M.
Only the onset of instability~regarding the second-orde
variations ofS or J with appropriate constraints! will differ
from one ensemble to the other. ForD53, this stability
problem was considered by Antonov@25# and Padmanabha
@16# in the microcanonical ensemble and by Chavanis@17# in
the canonical ensemble, by solving an eigenvalue equa
connected to the second-order variations of the thermo
namical potential. It was also studied by Lynden-Bell a
Wood @26# and Katz@27# by using an extension of Poincar´
theory of linear series of equilibria. We shall give the gen
alization of these results in Sec. II F to the case of a sys
of arbitrary dimensionD.
3-2
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B. The D-dimensional Emden equation

To determine the structure of isothermal spheres, we
troduce the functionc5b(F2F0), whereF0 is the gravi-
tational potential atr 50. Then, the density field can be wri
ten as

r5r0e2c, ~12!

where r0 is the central density. Introducing the notationj
5(SDGbr0)1/2r and restricting ourselves to spherical
symmetric configurations~which maximize the entropy for a
nonrotating system!, the Boltzmann-Poisson Eq.~11! reduces
to the form

1

jD21

d

dj S jD21
dc

dj D5e2c, ~13!

which is the D-dimensional generalization of the Emde
equation@28#. For D.2, Eq. ~13! has a simple explicit so
lution, the singular sphere

e2cs5
2~D22!

j2
. ~14!

The regular solution of Eq.~13! satisfying the boundary con
ditions

c5c850 at j50, ~15!

must be computed numerically. Forj→0, we can expand
the solution in Taylor series and we find that

c5
1

2D
j22

1

8D~D12!
j41

1

24

D11

D2~D12!~D14!
j61•••.

~16!

To obtain the asymptotic behavior of the solutions forj→
1`, we note that the transformationt5 ln j, c52 lnj2z
changes Eq.~13! in

d2z

dt2
1~D22!

dz

dt
52ez12~D22!. ~17!

For D.2, this corresponds to the damped oscillations o
fictitious particle in a potentialV(z)5ez22(D22)z, where
z plays the role of position andt the role of time. Fort→
1`, the particle will come at rest at the bottom of the w
at positionz05 ln@2(D22)#. Returning to original variables
we find that

e2c→ 2~D22!

j2
5e2cs for j→1`. ~18!

Therefore, the regular solution of the Emden equation~13!
behaves like the singular solution forj→1`. To determine
the next-order correction, we setz5z01z8 with z8!1.
Keeping only terms that are linear inz8, Eq. ~17! becomes
04613
-
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d2z8

dt2
1~D22!

dz8

dt
12~D22!z850. ~19!

The discriminant associated with this equation isD5(D
22)(D210). It exhibits two critical dimensionsD52 and
D510. For 2,D,10, we have

e2c5
2~D22!

j2 H 11
A

j (D22)/2
cosSA~D22!~102D !

2

3 ln j1d D J ~j→1`!. ~20!

The density profile~20! intersects the singular solution~14!
infinitely often at points that asymptotically increase ge
metrically in the ratio 1:e2p/A(D22)(102D) ~see, e.g., Fig. 1 of
Ref. @17# for D53). ForD>10, we have

e2c5
2~D22!

j2 H 11
1

j (D22)/2
~AjA(D22)(D210)/2

1Bj2A(D22)(D210)/2!J ~j→1`!. ~21!

For D52, Eq. ~17! can be solved explicitly and we get

e2c5
1

S 11
1

8
j2D 2 . ~22!

This result has been found by various authors in differ
fields ~see, e.g., Refs.@8,29#!. Note thate2c;j24 at large
distances instead of the usualj22 behavior obtained forD
.2. This implies that the mass of an unbounded isother
sphere is finite inD52, although it is infinite forD.2.

For D,2, we can neglectez on the right-hand side~rhs!
of Eq. ~17! at large distances and we get

e2c;e2ADj22D
~j→1`!, ~23!

whereAD is a constant depending on the dimensionD. For
D51, Eq. ~13! can be solved exactly, yielding the resu
~see, e.g., Ref.@30#!

e2c5
1

cosh2~j/A2!
, ~24!

establishingA15A2.

C. The Milne variables

As is well known @28#, isothermal spheres satisfy a ho
mology theorem: ifc(j) is a solution of the Emden equa
tion, thenc(Aj)22 lnA is also a solution, withA an arbi-
trary constant. This means that the profile of isotherm
configurations is always the same~characterized intrinsically
3-3
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by the functionc), provided that the central density and th
typical radius are rescaled appropriately. Because of this
mology theorem, the second-order differential equation~13!
can be reduced to afirst-order differential equation for the
Milne variables

u5
je2c

c8
and v5jc8. ~25!

Taking the logarithmic derivative ofu andv with respect to
j and using Eq.~13!, we get

1

u

du

dj
5

1

j
~D2v2u!, ~26!

1

v
dv
dj

5
1

j
~22D1u!. ~27!

Taking the ratio of the foregoing equations, we obtain

u

v
dv
du

5
22D1u

D2u2v
. ~28!

The solution curve in the (u,v) plane is plotted in Fig. 1 for
different values ofD. The curve is parametrized byj. It
starts from the point (u,v)5(D,0) with a slope (dv/du)0
52(D12)/D corresponding toj50. The points of hori-
zontal tangent are determined byu5D22 and the points of
vertical tangent byu1v5D. These two lines intersect a
(us ,vs)5(D22,2), which corresponds to the singular so
tion ~14!. For 2,D,10, the solution curve spirals indefi
nitely around the point (us ,vs). For D>10, the curve
reaches the point (us ,vs) without spiraling. ForD52, we
have the explicit solutionv52(22u) so that (u,v)→(0,4)
for j→1`. For D,2, (u,v)→(0,1`) for j→1` ~see
Fig. 2!. More precisely,

uev/(22D)

vD/(22D)
;vD ~j→1`!, ~29!

FIG. 1. The solutions of the Emden equation in the (u,v) plane
for systems with dimension 2,D,10.
04613
o-
where we have definedvD51/@AD(22D)2/(22D)#. For D
51, v151/A2.

D. The thermodynamical parameters

For bounded isothermal systems, the solution of Eq.~13!
is terminated by the box at a normalized radius given bya
5(SDGbr0)1/2R. We shall now relate the parametera to the
temperature and energy. According to the Poisson equa
~4!, we have for a spherically symmetric distribution
matter,

dF

dr
5

GM~r !

r D21
, ~30!

whereM (r )[*0
r rSDr 8D21dr8 is the mass within the spher

of radiusr ~the gravitational field created by a single partic
at the origin isF52¹F52Gm/r D21ur). Equation~30! is
the D-dimensional version of the Gauss theorem. Applyi
this theorem at the box radius, we have

GM5S r D21
dF

dr D
r 5R

. ~31!

Introducing the dimensionless variables defined previou
~using r /R5j/a), we get

h[
bGM

RD22
5ac8~a!. ~32!

We note that, forD52, the parameterh is independent on
R. This is a consequence of the logarithmic form of the Ne
tonian potential in two dimensions.

The computation of the energy is a little more intrica
First, extending the potential tensor theory developed
Chandrasekhar forD53 ~see, e.g., Ref.@31#!, we find that
the potential energy inD dimensions can be written as

FIG. 2. The solutions of the Emden equation in the (u,v) plane
for systems with dimensionD51 andD52.
3-4



it

u

o
th

us

.
e

.

rom

e

m-

The

THERMODYNAMICS AND COLLAPSE OF SELF- . . . PHYSICAL REVIEW E 66, 046133 ~2002!
W52
1

D22E rr•“FdDr , ~33!

for DÞ2. Now, the Boltzmann-Poisson equation~11! is
equivalent to the condition of hydrostatic equilibrium

“p52r“F, ~34!

with an equation of statep5rT. Substituting this relation in
Eq. ~33! and integrating by parts, we obtain

2K1~D22!W5DVDRDp~R!, ~35!

whereVD5SD /D is the volume of a hypersphere with un
radius. Equation~35! is the form of the Virial theorem inD
dimensions. The total energyE5K1W can thus be written

E5
D24

D22
K1

D

D22
VDRDp~R!. ~36!

Expressing the pressure in terms of the Emden function,
ing p5rT and Eq.~12!, and using Eq.~32! to eliminate the
temperature, we finally obtain

L[2
ERD22

GM2
5

D~42D !

2~D22!

1

ac8~a!
2

1

D22

e2c(a)

c8~a!2
.

~37!

It turns out that the normalized temperature and the n
malized energy can be expressed very simply in terms of
values of the Milne variables at the normalized box radi
Indeed, writingu05u(a) andv05v(a) and using Eqs.~32!
and ~37!, we get

h5v0 , ~38!

L5
1

v0
FD~42D !

2~D22!
2

u0

D22G . ~39!

FIG. 3. Evolution of the inverse temperatureh along the series
of equilibria ~parametrized bya) for 2,D,10. The curves corre-
spond toD54, 3, 2.5, 2.2 from bottom to top.
04613
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The curvesh(a) andL(a) are plotted in Figs. 3 and 4
For 2,D,10, they exhibit damped oscillations toward th
valueshs52 andLs51/(D22)2D/4, corresponding to the
singular solution~14!. For D>10 the curves are monotonic
For D52, we have explicitly

h5
a2

2S 11
1

8
a2D ,

L5
2

a2 S 11
a2

8 D H 8

a2 S 11
a2

8 D lnS 11
a2

8 D22J . ~40!

The expression of the energy has been obtained directly f
Eq. ~8! with the boundary conditionF(R)50. The inverse
temperature increases monotonically witha up to the
asymptotic valuehc54. Using Eq.~22! and returning to the
original variables, we can write the density profile in th
form

r5
4M

pR2~42h!S 11
h

42h

r 2

R2D 2 . ~41!

This density profile is represented in Fig. 5 for different te
peratures. At the critical inverse temperaturehc54, all the
particles are concentrated at the center of the domain.
density profile approaches the Dirac distribution

r~r !→Md~r ! for h→hc54, ~42!

which has an infinite~negative! energy.
For D,2, the curvesh(a) andL(a) are monotonic and

tend to1` and 0, respectively, asa→1`. For D51, we
have explicitly

h5A2a tanh~a/A2!, L52
3

2A2

1

a tanh~a/A2!

1
1

2 sinh2~a/A2!
. ~43!

FIG. 4. Evolution of the energyL along the series of equilibria
~parametrized bya) for 2,D,10.
3-5
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Note that according to Eq.~33!, the potential energy is nec
essarily positive forD,2, so the regionL>0 is forbidden.
Returning to original variables, the density profile is giv
by

r5
M

2A2R

a

tanh~a/A2!

1

cosh2S ar

A2R
D , ~44!

where we recall thatS152. Fora→1`, the profile tends to
a Dirac peakMd(r ).

In Figs. 6 and 7, we have plotted the equilibrium pha
diagramL-h, giving the temperature as a function of th
energy, for different dimensionsD. For 2,D,10, the curve
spirals around the limit point (Ls ,hs) corresponding to the
singular solution. ForD>10, the curve is monotonic unti
the limit point. ForD52, the curve is explicitly given by

FIG. 5. Equilibrium density profile of a two-dimensional se
gravitating system as a function of the inverse temperatureh. For
h50, the density is uniform. Forh→hc54, the density tends to a
Dirac peak. Forh.hc , there is no equilibrium state.

FIG. 6. Equilibrium phase diagram giving the inverse tempe
ture h as a function of the negative of the energyL for systems
with dimension 2,D,10.
04613
e

L5
1

h F 4

h
lnS 4

42h D22G , ~45!

and is represented in Fig. 7, together with the caseD51.
We stress that the preceding results, obtained in the m

field approximation, are exact in the thermodynamic lim
N→1` such thath andL are kept fixed. If the box radius
is given, this implies thatT;N andE;N2. Alternatively, if
the temperature and the energy per particle are given,
thermodynamic limit is such thatN→1` with N/RD22

constant~for D.2).

E. The minimum temperature and minimum energy

For 2,D,10, the curveh(a) presents an extremum a
points an such thatdh/da(an)50. Using Eqs.~38! and
~27!, we find that this condition is equivalent to

u05D225us . ~46!

Since the curveu5us passes through the center of the spi
in the (u,v) plane, this determines an infinity of solution
~see Fig. 8!, one at each extremum ofv ~sinceh5v0). As-
ymptotically, thean follow a geometric progression~see Ref.
@17# for more details!:

an;e2pn/A(D22)(102D) ~n→1`, integer!. ~47!

In Fig. 3, we see that an equilibrium state exists only for

h5
bGM

RD22
<h~a1!, ~2,D,10!. ~48!

This determines a maximum mass~for given T andR) or a
minimum temperature~for givenM andR) beyond which no
equilibrium state is possible. In that case, the system is
pected to undergo anisothermal collapse~see Sec. III C!.
For D52 and forD>10, theh(a) curve is monotonic. An
equilibrium state exists provided that

-

FIG. 7. Equilibrium phase diagram for two-dimensional se
gravitating systems. For infinitely negative energies, the inve
temperature tends to the valuehc54. We have also represented th
caloric curve forD51.
3-6
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h5bGM<hc54 ~D52!, ~49!

h5
bGM

RD22
<hs52 ~D>10!. ~50!

We get comparable results for the energy. For 2,D
,10, the curveL(a) presents an extremum at pointsan8
such thatdL/da(an8)50. Using Eqs.~39!, ~26!, and ~27!,
we find that this condition is equivalent to

4u0
212u0v01~D228D14!u01D~D22!~42D !50.

~51!

We can check that the limit point (us ,vs) is a solution of this
equation. Therefore, the intersection of the parabola~P! de-
fined by Eq.~51! with the spiral in the (u,v) plane deter-
mines an infinity of pointsan8 at which the energy is extre
mum ~see Fig. 8!. In Fig. 4, we see that an equilibrium sta
exists only for

L5
2ERD22

GM2
<L~a18! ~2,D,10!. ~52!

This determines a minimum energy~for givenM andR) or a
maximum radius~for givenM andE) beyond which no equi-
librium state exists. In that case, the system is expecte
collapse and overheat; this is calledgravothermal catastro-
phe ~see Sec. III D!. For D>10, the curveL(a) is mono-
tonic. An equilibrium state exist only for

L5
2ERD22

GM2
<Ls5

1

D22
2

D

4
~D>10!. ~53!

For D52, there exists an equilibrium state for each value
energy~see Fig. 7!: there is no gravothermal catastrophe
the microcanonical ensemble in two dimensions@8#. For D

FIG. 8. Location of the turning points of energy and temperat
in the (u,v) plane for systems with dimension 2,D,10. The con-
struction is made explicitly forD53, which corresponds to the
case extensively studied in Refs.@16,17#. The dashed linev52
determines the location of the nodes of the density profiles
trigger the instabilities in the canonical ensemble~see Sec. II F!.
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,2, there exists an equilibrium state for all accessible val
of energy (L,0) and temperature (h.0) ~see also Ref.
@32# for D51).

F. The thermodynamical stability

We now study the thermodynamical stability of se
gravitating systems in various dimensions. We start by
canonical ensemble which is simpler in a first approach
critical point of free energy at fixed mass and temperatur
a localmaximumif, and only if, the second-order variation

d2J52E ~dr!2

2r
dDr2

1

2TE drdFdDr ~54!

are negative for any perturbationdr that conserves mass
i.e.,

E drdDr50. ~55!

This is the condition of thermodynamical stability in th
canonical ensemble. Introducing the functionq(r ) by the
relation

dr5
1

SDr D21

dq

dr
, ~56!

and following a procedure similar to the one adopted in R
@17#, we can put the second order variations of free energ
the quadratic form

d2J5
1

2E0

R

drqF G

TrD21
1

d

dr S 1

SDrr D21

d

dr D Gq. ~57!

The second-order variations of free energy can be posi
~implying instability! only if the differential operator tha
occurs in the integral has positive eigenvalues. We ne
therefore, to consider the eigenvalue problem

F d

dr S 1

SDrr D21

d

dr D 1
G

TrD21Gql~r !5lql~r !, ~58!

with ql(0)5ql(R)50 in order to satisfy the conservation o
mass. If all the eigenvaluesl are negative, then the critica
point is a maximum of free energy. If at least one eigenva
is positive, the critical point is an unstable saddle point. T
point of marginal stability, i.e., the value ofa in the series of
equilibria h(a) at which the solutions pass from loca
maxima of free energy to unstable saddle points, is de
mined by the condition that the largest eigenvalue is equa
zero (l50). We thus have to solve the differential equati

d

dr S 1

SDrr D21

dF

dr D 1
GF

TrD21
50 ~59!

with F(0)5F(R)50. Introducing the dimensionless var
ables defined previously, we can rewrite this equation in
form

e

at
3-7
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d

dj S ec

jD21

dF

dj D 1
F~j!

jD21
50 ~60!

with F(0)5F(a)50. If

L[
d

dj S ec

jD21

d

dj D 1
1

jD21
~61!

denotes the differential operator that occurs in Eq.~60!, we
can check by using the Emden equation~13! that

L~jD21c8!5c8, L~jDe2c!5~D22!c8. ~62!

Therefore, the general solution of Eq.~60! satisfying the
boundary conditions atj50 is

F~j!5c1~jDe2c2~D22!jD21c8!. ~63!

Using Eq.~63! and introducing the Milne variables~25!, the
conditionF(a)50 can be written

u05D22. ~64!

This relation determines the points at which a new eig
value becomes positive (l501). Comparing with Eq.~46!,
we see that a mode of stability is lost each time thath is
extremum in the series of equilibria, in agreement with
turning point criterion of Katz@27# in the canonical en-
semble. In particular, the series of equilibria becomes
stable at the point of minimum temperature~or maximum
mass! a1. This corresponds to the point of infinite specifi
heat C5dE/dT→`, just before entering the regionC,0
~see Fig. 6!. This is, of course, satisfactory on a physic
point of view since negative specific heats are forbidden
the canonical ensemble. Secondary modes of instability
pear at valuesa2 , a3 , . . . . Weobtain the same results b
considering the dynamical stability of isothermal gaseo
spheres with respect to the Navier-Stokes equations~see Ref.
@17# for D53). Therefore, dynamical and thermodynamic
stability criteria coincide for isothermal gaseous spheres

According to Eq.~56!, the perturbation profile that trig
gers a mode of instability at the critical pointl50 is given
by

dr

r0
5

1

SDjD21

dF

dj
, ~65!

whereF(j) is given by Eq.~63!. Introducing the Milne vari-
ables~25!, we get

dr

r
5

c1

SD
~22v !. ~66!

The density perturbationdr becomes zero at point~s! j i such
thatv(j i)52. The number of zeros is therefore given by t
number of intersections between the spiral in the (u,v) plane
and the linev52 ~see Fig. 8!. For thenth mode of instability
we need to follow the spiral up to thenth extremum ofv
~since an corresponds to an extremum ofh, hencev).
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Therefore, the density perturbationdr corresponding to the
nth mode of instability hasn zerosj1 ,j2 , . . . ,jn,an . As-
ymptotically, the zeros follow a geometric progression w
ratio e2p/A(D22)(102D) @17#. Note also that the first mode o
instability has only one node.

In the microcanonical ensemble, the condition of therm
dynamical stability requires that the equilibrium state is
entropy maximum at fixed mass and energy. This condit
can be written as

d2S52E ~dr!2

2r
dDr2

1

2TE drdFdDr

2
1

DMT2 S E FdrdDr D 2

,0, ~67!

for any variationdr that conserves mass@the conservation of
energy has already been taken into account in obtaining
~67!#. Now, following a procedure similar to that of Ref.@16#
in D53, the second variations of entropy can be put in
quadratic form

d2S5E
0

RE
0

R

drdr8q~r !K~r ,r 8!q~r 8!, ~68!

with

K~r ,r 8!52
1

DMT2

dF

dr
~r !

dF

dr
~r 8!

1
1

2
d~r 2r 8!F G

TrD21
1

d

drS 1

SDrr D21

d

dr D G .

~69!

The problem of stability can therefore be reduced to
study of the eigenvalue equation

E
0

R

dr8K~r ,r 8!Fl~r 8!5lFl~r !, ~70!

with Fl(0)5Fl(R)50. The point of marginal stability (l
50) will be determined by solving the differential equatio

d

dr S 1

SDrr D21

dF

dr D 1
GF

TrD21
5

2V

DMT2

dF

dr
~r !, ~71!

with

V5E
0

RdF

dr
~r 8!F~r 8!dr8. ~72!

Introducing the dimensionless variables defined previou
this is equivalent to

d

dj S ec

jD21

dF

dj D 1
F

jD21
5x

dc

dj
, ~73!

with
3-8
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x5
2

DaD21c8~a!
E

0

adc

dj
~j8!F~j8!dj8, ~74!

andF(0)5F(a)50. Using the identities~62!, we can check
that the general solution of Eq.~73! satisfying the boundary
conditions forj50 andj5a is

F~j!5
x

D222u0
@jDe2c2~D22!jD21c8#1xjD21c8.

~75!

The point of marginal stability is then obtained by substit
ing the solution~75! in Eq. ~74!. Using the identities

E
0

a

c8jDe2cdj5aD21c8~a!~D2u0!, ~76!

~D22!E
0

a

jD21~c8!2dj5aD21c8~a!~2D22u02v0!,

~77!

which result from simple integrations by parts and from t
properties of the Emden equation~13! ~see Appendix C!, it is
found that the point of marginal stability is determined by t
condition ~51!. Therefore, the series of equilibria becom
unstable at the point of minimum energy in agreement w
the turning point criterion of Katz@27# in the microcanonical
ensemble. Note that negative specific heatsC,0 are allowed
in the microcanonical ensemble untilC50 ~i.e., the corre-
sponding isothermal spheres are stable!.

According to Eqs.~65! and ~75!, the perturbation profile
that triggers a mode of instability at the critical pointl50 is
given by

dr

r
5

x

SD

1

D222u0
~D2v2u0!, ~78!

where we have used the Emden equation~13! and introduced
the Milne variables~25!. The number of nodes in the pertu
bation profile can be determined with the graphical constr
tion described in Ref.@16# for D53. For 2,D,3.32, it is
found that the first mode of instability has a core-halo str
ture~i.e., two nodes! in continuity with the caseD53, while
for 3.32,D,10 the perturbation profile has only one no
~see Fig. 9!.

We can note that the structure of the perturbation profi
triggering the gravitational instability at the critical points~in
microcanonical and canonical ensembles! qualitatively
agrees with the structure of the density profiles that we h
constructed in Appendixes A and B to show the absence
global maximum of entropy or free energy. In the microc
nonical ensemble, we showed that forD,4, the system has
to break into a ‘‘core’’ and a ‘‘halo’’ in order to increas
entropy by a large amount while this separation is not n
essary forD.4. Analogously, the perturbation profile~78!
has a ‘‘core-halo’’ structure forD,3.32 and not forD
.3.32. On the other hand, in the canonical ensemble,
indicate in Appendix B that the natural tendency of the s
tem is to form a Dirac peak instead of a core-halo structu
04613
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This is in agreement with the perturbation profile~66! of the
first mode of instability in the canonical ensemble which h
no core-halo profile@17#.

The thermodynamical stability analysis presented in t
section also shows that the equilibrium states forD<2 and
D>10 are always stable since the series of equilibria do
present turning points of energy or temperature. Note fina
that the grand canonical, grand microcanonical, and isob
ensembles have been considered in Ref.@33# for D53; these
results can be easily extended to a space of arbitrary dim
sion D with only minor modifications.

III. DYNAMICS OF SELF-GRAVITATING BROWNIAN
PARTICLES IN DIMENSION D

A. The Smoluchowski-Poisson system

We now consider the dynamics of a system of se
gravitating Brownian particles in a space of dimensionD. As
in Ref. @1#, we consider a high friction limit in order to
simplify the problem. We thus study the Smoluchows
equation@34#

]r

]t
5“F1

j
~T“r1r“F!G , ~79!

coupled to the Newton-Poisson equation~4!. In the microca-
nonical ensemble, the temperatureT(t) evolves in time so as
to satisfy the energy constraint~8!. In the canonical en-
semble, the temperatureT is constant. The Smoluchowsk
equation can be obtained from a variational principle cal
the maximum entropy production principle@2#. This varia-
tional approach is interesting as it makes a direct link
tween the dynamics and the thermodynamics. In the mic
canonical description, the rate of entropy production can
put in the form~see Ref.@2# and Appendix D!

Ṡ5E 1

Trj
~T“r1r“F!2dDr>0, ~80!

FIG. 9. Perturbation profile corresponding to the first mode
instability in the microcanonical ensemble for various dimensio
of space. The profile has two nodes forD<3.32 ~core-halo struc-
ture! and only one node forD.3.32.
3-9
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which follows immediately from Eqs.~8!, ~9!, and~79!. For
a stationary solution,Ṡ50 and we obtain the Boltzman
distribution~10! which is a critical point of entropy. Consid
ering a small perturbation around equilibrium, we can est
lish the identity@1#

d2Ṡ52ld2S>0, ~81!

wherel is the growth rate of the perturbation defined su
that dr;elt. This relation shows that a stationary solutio
of the Smoluchowski-Poisson system is dynamically sta
against small perturbations if and only if it is a local entro
maximum. In addition, the eigenvalue problem determin
the growth ratel of the perturbation is similar to the eigen
value problem~70! associated with the second-order var
tions of entropy~they coincide for marginal stability! @1#.
This shows the equivalence between dynamical and ther
dynamical stabilities for self-gravitating Brownian particle
We get similar results in the canonical ensemble withJ in
place ofS. The relation~81! has been found for other kineti
equations satisfying aH theorem@35#. Finally, we note that
the Smoluchowski-Poisson system satisfies a Virial theo
of the form ~Appendix D!

1

2
j

dI

dt
52K1~D22!W2DpbV, ~82!

where

I 5E rr 2dDr ~83!

is the moment of inertia andpb is the pressure on the bo
~assumed uniform!. In the following, we determine self
similar solutions of the Smoluchowski-Poisson system
scribing the collapse regime. ForE.Ec ~in the microcanoni-
cal ensemble! or T.Tc ~in the canonical ensemble!, the
solutions of the Smoluchowski-Poisson system can eithe
lax towards the local entropy~or free energy! maximum~see
Sec. II! or collapse. The choice between these two behav
depends on a complicated notion of basin of attraction
sketched in Ref.@1# in D53. Unlike the ordinary Smolu-
chowski equation~without self-gravity! the stationary solu-
tion of the Smoluchowski-Poisson system~when it exists!
does not attract all dynamical solutions since it is only
local maximum of the thermodynamical potential forD
.2. Other evolutions~collapse! are possible and lead t
larger values of entropy or free energy.

The Smoluchowski-Poisson system can be viewed a
prototype of kinetic equations for self-gravitating syste
and is much simpler than the more realistic Landau
Fokker-Planck equations. Possible astrophysical applicat
regarding planetesimal formation in the solar nebula or v
lent relaxation of collisionless stellar systems are evocate
Ref. @1#. The Smoluchowski-Poisson system can also
scribe the relaxation of a gas of point vortices in two dime
sions towards a self-organized state~macrovortex!. In that
context, it can be deduced from theN-body Liouville equa-
tion of the point vortex gas by using projection opera
04613
-

le

g

-

o-
.

m

-

e-

rs
s

a
s
r
ns
-
in
-
-

r

methods @36#. Finally, the Smoluchowski-Poisson syste
provides a simple model to describe the process of chem
axis for bacterial populations@13#.

B. Self-similar solutions of the Smoluchowski-Poisson system

From now on, we setM5R5G5j51. The equations of
the problem become

]r

]t
5“~T“r1r“F!, ~84!

DF5SDr, ~85!

E5
D

2
T1

1

2E rFdDr , ~86!

with boundary conditions

]F

]r
~0,t !50, F~1!5

1

22D
, T

]r

]r
~1!1r~1!50,

~87!

for D.2. ForD52, we takeF(1)50 on the boundary. We
restrict ourselves to spherically symmetric solutions. In
grating Eq. ~85! once, we can rewrite the Smoluchowsk
Poisson system in the form of a single integrodifferent
equation

]r

]t
5

1

r D21

]

]r H r D21S T
]r

]r
1

r

r D21E0

r

r~r 8!SDr 8D21dr8D J .

~88!

The Smoluchowski-Poisson system is also equivalent t
single differential equation

]M

]t
5TS ]2M

]r 2
2

D21

r

]M

]r D 1
1

r (D21)
M

]M

]r
~89!

for the quantity

M ~r ,t !5E
0

r

r~r 8!SDr 8D21dr8, ~90!

which represents the mass contained within the sphere
radiusr. The appropriate boundary conditions are

M ~0,t !50, M ~1,t !51. ~91!

It is also convenient to introduce the functions(r ,t)
5M (r ,t)/r D satisfying

]s

]t
5TS ]2s

]r 2
1

D11

r

]s

]r D 1S r
]s

]r
1DsD s. ~92!

We look for self-similar solutions of the form

r~r ,t !5r0~ t ! f S r

r 0~ t ! D , r 05S T

r0
D 1/2

. ~93!
3-10
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In terms of the mass profile, we have

M ~r ,t !5M0~ t !gS r

r 0~ t ! D with M0~ t !5r0r 0
D , ~94!

and

g~x!5E
0

x

f ~x8!SDx8D21dx8. ~95!

In terms of the functions, we have

s~r ,t !5r0~ t !SS r

r 0~ t ! D with S~x!5
g~x!

xD
. ~96!

Substituting the ansatz~96! into Eq. ~92!, we find that

dr0

dt
S~x!2

r0

r 0

dr0

dt
xS8~x!5r0

2S S9~x!1
D11

x
S8~x!

1xS~x!S8~x!1DS~x!2D ,

~97!

where we have setx5r /r 0. The variables of position and
time separate, provided that there existsa such that

r0r 0
a5k, ~98!

wherek is a constant. In that case, Eq.~97! reduces to

dr0

dt S S~x!1
1

a
xS8~x! D5r0

2S S9~x!1
D11

x
S8~x!

1xS~x!S8~x!1DS~x!2D .

~99!

Assuming that such a scaling exists implies that (1/r0
2)

3(dr0 /dt) is a constant that we arbitrarily set equal toa
~note that this convention is different from the one adopted
Ref. @1#!. This leads to

r0~ t !5
1

a
~ tcoll2t !21, ~100!

so that the central density becomes infinite in a finite ti
tcoll . The scaling equation now reads

aS1xS85S91
D11

x
S81S~xS81DS!. ~101!

For x→1`, we have asymptotically

S~x!;x2a, g~x!;xD2a, f ~x!;x2a. ~102!
04613
n
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C. Canonical ensemble

In the canonical ensemble in which the temperatureT is a
constant, we have1

a52, k5T. ~103!

In that case, the scaling equation~101! can be solved ana
lytically. Following a procedure similar to the one develop
in Ref. @1#, we find that

S~x!5
4

D221x2
. ~104!

Then, Eqs.~96! and ~95! yield

g~x!5
4xD

D221x2
, f ~x!5

4~D22!

SD

D1x2

~D221x2!2
.

~105!

According to Eqs.~93! and~100!, the central density evolve
with time like

r~0,t !5r0~ t ! f ~0!5
2D

~D22!SD
~ tcoll2t !21. ~106!

According to Eqs.~93! and~94!, the core radius and the cor
mass evolve like

r 0~ t !5A2T~ tcoll2t !1/2, M0~ t !5 1
2 ~2T!D/2~ tcoll2t !D/221.

~107!

Note that forD.2, the core mass goes to zero at the c
lapse time. Att5tcoll , we get the singular profile

r~r ,t5tcoll!5
4T~D22!

SDr 2
, M ~r ,t5tcoll!54TrD22.

~108!

Therefore, att5tcoll the free energy is finite and the syste
has not created a Dirac peak contrary to what might ha
been expected from the discussion of Appendix B and R
@37#. In fact, we show in Appendix E that the collapse co
tinues aftertcoll and that the Dirac peak is formed in th
post-collapseregime of our Brownian model.

D. Microcanonical ensemble

In the microcanonical ensemble, the exponenta is not
determined by simple dimensional analysis. In Ref.@1#, we
found numerically that the scaling equation~101! has physi-
cal solutions only fora<amax, with amax.2.21 for D53.
We also argued that the system will select the expon
amax, since it leads to a maximum increase of entropy.
this section, we show that in the limit of large dimensionD,
we can explicitly understand the occurrence of such aamax.

1The caseT50 is treated in Appendix E.
3-11
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In addition, we will present the derivation of perturbativ
expansions foramax and the scaling functionS, in powers of
D21.

Equation~101! can be formally integrated as a first-ord
differential equation~writing S95S83@S9/S8#), leading to
an expression ofS(x) as a function ofx, S(x) itself, and
S9(x)/S8(x),

U a

DS~x!
21U

5U a

DS~0!
21U

3expF aE
0

x y dy

y2~12S~y!!2y
S9~y!

S8~y!
2~D11!G . ~109!

We now definex0, such thatS(x0)5a/D. SinceSshould be
analytic, the foregoing relation implies forx→x0,

E
0

x ay

F~y!
dy; lnux2x0u, ~110!

whereF(y) is the function that occurs in the denominator
the integral in Eq.~109!. From Eq. ~110!, we must have
F(y)5ax0(y2x0) for y→x0, which impliesF(x0)50 and
F8(x0)5ax0. These conditions can be rewritten explicitly

x0
2S 12

a

D D2x0

S9~x0!

S8~x0!
2~D11!50, ~111!

~a22!x052
d

dxFx2S~x!1x
S9~x!

S8~x!
G

x0

. ~112!

This preparatory work now allows the introduction of a sy
tematic expansion in large dimensionD for the scaling func-
tion S, the scaling exponenta, andx0. In this limit, let us
neglect the contribution of the terms that are not of ordeD
in the right-hand side of Eq.~101!. This actually amounts to
taking F(y).y22D in Eq. ~109!. Within this approxima-
tion, we find

U a

DS~x!
21U5U a

DS~0!
21UUx2

D
21Ua/2

, ~113!

which is an analytic function only ifa52. This leads to
x05AD, and to the more explicit form forS,

S~x!5
S~0!

11S DS~0!

2
21D x2

D

. ~114!

S(0) remains undetermined, and will be fixed by the ne
order approximation. Indeed, we can iteratively solve the
scaling equation, Eq.~101!, by reinserting the zeroth-orde
solution into Eq.~109!, and eventually continue this proce
04613
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with the new improved scaling function, and so forth. Thu
expressing the conditions of Eq.~111! and Eq.~112!, and
definingz5DS(0)/2 @which will be of orderO(1)], we ob-
tain

x0
25D1

4

z
1O~D21! or x05ADS 11

2

zD
1O~D22! D ,

~115!

and

a225
4

D F1

z
2

2

z2G1O~D22!. ~116!

Equation~116! provides a relation between the possible v
ues fora and the associated value ofS(0)52z/D. Note that
the function ofz in the right-hand side of Eq.~116! has a
well defined maximum. Hence, up to orderO(D21), we find
that a<amax, with

amax521 1
2 D211O~D22!, ~117!

which is associated to the valuez541O(D21) or S(0)
58/D1O(D22). As a is necessarily greater than 2~as the
temperature cannot vanish!, a solution exists for anya
P@2,amax#. As already mentioned,amax is dynamically se-
lected as it leads to the maximum divergence of the entr
and the temperature@see Eq.~127! below#.

Inserting Eq.~114! into Eq. ~109!, we find the next-order
approximation forS,

U a

DS~x!
21U5U a

DS~0!
21UUx2

x0
2

21U (a/2) (12f)F x2

x1
2

11Gaf/2

,

~118!

wherex0 is given by Eq.~115!, andx1 andf are defined by

x1
25

D

z21
1

2~z22!

z~z21!
1O~D21!,

f5
2

D F1

z
2

2

z2G1O~D22!. ~119!

Again, the analyticity condition imposes thata/2(12f)
51, which exactly leads to Eq.~116!, and to the following
explicit form for S:

S~x!5
a

D F11S 12
a

2zD S x2

x0
2

21D S x2

x1
2

11D a/221G21

.

~120!

This improved scaling function can be inserted again into
conditions expressed by Eqs.~111! and Eq.~112!, leading to
the next-order term in the expansion ofa. After elementary,
but cumbersome calculations, we end up with
3-12
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a225
4

D F1

z
2

2

z2G1
8

D2 F5

z
2

26

z2
1

31

z3
2

6

z4

2S 1

z
2

7

z2
1

14

z3
2

8

z4D ln zG1O~D23!. ~121!

This function has again a well defined maximum for

z[
D

2
S~0!541S 41

2
26 ln 2DD211O~D22!, ~122!

associated to the value

amax521 1
2 D211 11

16 D221O~D23!. ~123!

This expansion givesamax52.24 . . . inD53, in fair agree-
ment with the exact valueamax52.2097 . . . obtained nu-
merically in Ref.@1#. In addition, the exponenta52 is as-
sociated to z5214D211O(D22). In principle, these
expansions can be systematically pursued to the prize o
creasingly complicated calculations.

Finally note that Eqs.~93! and~100! lead to the following
exact asymptotic for the central densityr(0,t):

r~0,t !;KD~a!~ tcoll2t !21, KD~a!5
2z~a!

aSD
, ~124!

where we have usedf (0)5DS(0)/SD and the definition of
z. The functionz(a) is determined implicitly by Eq.~121!,
up to orderO(D22). For the special casesa52 and a
5amax, we, respectively, find

KD~2!52SD
21@112D211O~D22!#, ~125!

KD~amax!54SD
21F11S 39

8
2

3

2
ln2DD211O~D22!G ,

~126!

which shows thatKD(amax) is substantially greater tha
KD(2) ~twice bigger in the infiniteD limit, the ratio being
even bigger for finiteD, as 39

8 2 3
2 ln 2'3.835 . . ..2). This

substantial difference was noted in Ref.@1#, in the caseD
53. Finally, as expected in the microcanonical ensem
the temperature diverges during the collapse asT(t);(tcoll
2t)2aT with aT5122/a; see Eqs.~93!, ~98!, and ~100!.
The strongest divergence is obtained fora5amax. Accord-
ing to Eq.~123!, we have

aT522
2

amax
5

1

4
D211

9

32
D221O~D23!. ~127!

If we plug D53 in Eq. ~127!, we find the estimateaT
'0.11 . . . in fair agreement with the exponent measur
numerically in@1#, aT'0.1. At t5tcoll , the entropy is infi-
nite and the system has a ‘‘core-halo’’ structure~i.e., it is not
a Dirac peak! with a vanishing mass in the core. This corr
sponds to asmall number of particles packed together~or
04613
n-

e,

just a binary! leading to an infinite density but a weak ma
Mc!M . This structure is in agreement with the discussi
of Appendix A and Ref.@37#.

IV. THE TWO-DIMENSIONAL CASE

A. The critical temperature

In two dimensions, the dynamical equation~89! for the
mass profile reads

]M

]t
54Tu

]2M

]u2
12M

]M

]u
, ~128!

after the change of variableu5r 2 has been effected. Look
ing for a stationary solution, and usinguM95(uM8)8
2M 8, Eq. ~128! is readily integrated leading to

M ~u!5
4T

4T21

u

11
u

4T21

. ~129!

Note thatM (1)51, which ensures that the whole mass
included in this solution. Usingr5M 8/p, we find that the
density profile is given by

r~r !5
4r0

p

1

@11~r /r 0!2#2
, ~130!

with

r 05A4T21 and r0r 0
25T. ~131!

This solution exists provided thatT.Tc51/4, which defines
the collapse temperature. We have thus recovered the r
~41! by a slightly different method. Note that the value ofTc
and the dependence ofr 0 andr0 on the temperature coincid
with the exact results obtained within the conformal fie
theory @38#. In the following, T is set constant~canonical
description! as we have already seen that the gravother
catastrophe does not exist in the microcanonical ensemb
two dimensions.

B. Scaling collapse forTÄTc

We now address the dynamics at the critical tempera
T5Tc51/4. We note that contrary to what happens in oth
dimensions, the central density diverges atTc . Thus, in anal-
ogy with critical phenomena, we anticipate a scaling solut
for M (u,t), of the form

M ~u,t !'
~a~ t !11!u

11a~ t !u
, ~132!

which preserves the scaling form obtained aboveTc , and
which satisfies the boundary conditionM (1,t)51. The cor-
responding density profile is

r~r ,t !5
a~ t !11

p

1

~11a~ t !r 2!2
. ~133!
3-13
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The central density

r~0,t !5
a~ t !11

p
, ~134!

is expected to diverge fort→1`, so thata(t) is also ex-
pected to diverge.

Inserting the ansatz Eq.~132! into Eq. ~128! shows that
the left-hand term is indeed negligible compared to b
terms of the right-hand side, to leading order ina. So far, this
prevents us from determining a dynamical equation fora. In
order to achieve that, we must solve Eq.~128! to the next
order ina21. We thus look for a solution of the form

M ~u,t !5
a~ t !u

11a~ t !u
1a~ t !21h~u,t !, ~135!

whereh(u,t) is expected to be of orderO(1), andshould
satisfy h(0,t)50 and h(1,t)51 ~the total integrated mas
should be 0 and 1, respectively, foru50 and u51), and
]h

]u
(0,t)50, which ensures that Eq.~134! is exactly obeyed,

defining a(t) without any ambiguity. The contribution o
]M /]t in the left-hand side of Eq.~128! is dominated by the
time derivative of Eq.~132!:

]

]t F ~11a~ t !!u

11a~ t !u G5
u~12u!

~11au!2

da

dt
, ~136!

which will be checked self-consistently hereafter. In ad
tion, nonlinear terms inh in the right-hand side are als
negligible. Therefore,h satisfies

au~12u!

~11au!2

da

dt
5u

]2h

]u2
12

]

]u S au

11au
hD . ~137!

Actually, for a given time, this equation becomes an ordin
differential equation involving only one variableu, asa and
da/dt appear as parameters. Equation~137! can be inte-
grated leading to a first-order equation inh, which can be
solved easily. Definingv5au, we finally get

h~u,t !5a21S 11
2

aD da

dt
~11v !22F ~v221!ln~11v !1v~1

22v !12vE
0

v ln~11z!

z
dz2

2v21v3

2~a12!G , ~138!

which depends on time only through the variablesa and
da/dt. Now, da/dt is determined by imposing the bounda
conditionh(1,t)51, which leads to

da

dt
5

a

ln a25/2
@11O~ ln a22!#. ~139!

One can solve iteratively Eq.~128!, by adding the time de-
rivative of the above solution to the left-hand side, in ord
to compute an improvedh. To leading order, the form of Eq
~138! is preserved. However, new terms are generated w
04613
h

-

y

r

h

are important forv;a (u;1), and which generate terms o
order O(a/ ln3a) in the expansion forda/dt. This explains
the form of the error term in Eq.~139!.

Integrating Eq.~139! for large time, we get the exac
asymptotic expansion for large time

a~ t !5expS 5

2
1A2t D @11O~ t21/2ln t !#. ~140!

For t→1`, the central density diverges likea(t) and the
core radius goes to zero likea(t)21/2. In addition, the scaling
solution ~133! at T5Tc goes to a Dirac peak containing th
whole mass@see Eq.~42!#, as the decay exponent of th
scaling function is 4, which is strictly greater than 2.

C. Collapse for TËTc

For D52, the scaling equation associated to Eq.~89!
does not display any physical solution when solved num
cally. In this section, we thus present a special treatm
adapted to this case. The principal difference with other
mensions is the divergence of the central density atTc , and
the occurrence of a scaling solution at this temperature.

Strictly belowTc , we expect a finite time collapse. Clos
to the center, the solution takes the form

M ~u,t !'4T
a~ t !u

11a~ t !u
, ~141!

where again the left-hand side of Eq.~128! is negligible
compared to each term on the right-hand side. We thus l
for a solution of the type

M ~u,t !54T
a~ t !u

11a~ t !u
1h~u,t !, ~142!

whereh is of orderO(1) as it contains a finite fraction of th
total mass, since the first term contains a mass of orderT
,1. Inserting this ansatz in the dynamical equation~128!,
we obtain

1

4T

]h

]t
1

da

dt

u

~11au!2
5u

]2h

]u2
12

]

]u S au

11au
hD12h

]h

]u
.

~143!

One can look for a scaling solution of the type

h~u,t !5ag21H~au! with H~v !;cv12g when v→1`,
~144!

so that the mass included in this scaling profileh(1,t)5c
5O(1). With this definition, the density profile decays fo
large distance asr;r 2a, with a52g. Inserting this ansatz
in Eq. ~143!, we obtain

F 1

4T
~vH81~g21!H !1a12g

v

~11v !2G da

dt
a22

5vH912S v
11v

H D 8
12ag21HH8, ~145!
3-14
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where derivatives are with respect to the variablev. We are
free to choosea(t)5pr(0,t)/(4T), so thatH8(0)5H(0)
50. For smallv, Eq. ~145! leads to

da

dt
5H9~0!ag11. ~146!

Equation~145! has a global scaling solution only forg51.
However, we know that in this case the scaling equat
obtained by settingg51 does not display any physical so
lution. Thus, we conclude that there is no scaling solut
obtained by imposing that all terms in Eq.~145! scale the
same way. However, as we will see in the section devote
numerical simulations, the direct simulation of Eq.~128!
seems to display a scaling solution withg'0.6–0.7 for nu-
merically accessible densities. Strictly speaking, this is
tally excluded by the above equation, except if one allowg
to depend very slowly on the density ora. For a givena, we
thus want to solve Eq.~145!, where the boundary condition
will ultimately select the effective value ofg, and that of
da/dt. More precisely, once we imposeH8(0)5H(0)50,
and the condition of Eq.~146!, we end up with a shooting
problem forH9(0) andg. For largea, andv!a, it is clear
that the nonlinear term of the right-hand side of Eq.~145!
becomes irrelevant, and we drop it from now on.

In order to understand the origin of this shooting proble
and to obtain an accurate estimate ofg, let us solve Eq.
~145! in the limit of very largea, in the range 1!v!a. In
this regime, Eq.~145! simplifies to the following equation

F 1

4T
~vH81~g21!H !1a12gv21Gv5vH912H8,

~147!

where

v5
da

dt
a225H9~0!ag21. ~148!

Let us now multiply this equation byvg22 and integrate the
resulting equation. After elementary manipulations, we
tain

H81F32g

v
2

v

4TGH
52

vc

4T
v12g2

va12g

22g
v21

1~22g!~32g!v12gE
v

1`

wg23H~w! dw,

~149!

wherec;O(1), which has been defined in Eq.~144!, ap-
pears here as an integration constant. Then, one can inte
this differential equation that leads to the following se
consistent relation forH:
04613
n

n

to

-

,

-

ate

H~v !5vg23expS vv
4T D E

v

1`

w32gexpS 2
vw

4T DF~w! dw,

~150!

whereF is defined as the opposite of the right-hand side
Eq. ~149!,

F~v !5
vc

4T
v12g1

va12g

22g
v21

2~22g!~32g!v12gE
v

1`

wg23H~w! dw.

~151!

Equation ~147! implies that H(v); ln v, when v→0 @of
course, this apparent divergence does not occur in the
dynamical equation~145!#. Considering the prefactorvg23

in Eq. ~150!, this behavior can be obtained if and only if

E
0

1`

w32gexpS 2
vw

4T DF~w! dw50. ~152!

As v is expected to go to zero for largea asg,1 @see Eq.
~148!#, the dominant contribution of the integral of the thir
term in the definition ofF comes from the largew region, for
which H can be replaced by its asymptotic form@see Eq.
~144!#. Hence, definingG(x)5*0

1`wxexp(2w) dw and «
512g, and using Eq.~148!, the condition expressed in Eq
~152! can be rewritten as

c5
G~11«!

«~11«!2G~112«!
H9~0!S H9~0!

4T D «

a2«2
. ~153!

As c is of orderO(1), we findthat «→0 asa→1`. More
precisely, in this limit,« is the solution of the following
implicit equation:

«5Aln~K/«!

ln a
, ~154!

whereK5H9(0)/c1O(«). Finally, we obtain

«512g5Aln ln a

2 lna
~11O~@ ln ln a#21!!. ~155!

In conclusion, although the solution is not, strictly speakin
a true scaling solution, the explicit dependence ofg on a is
so weak that an apparent scaling should be seen with
effectiveg almost constant for a wide range of values ofa.
Hence, the total density profile is the sum of the scal
profile obtained atTc with a T/Tc weight ~behaving as a
Dirac peak of weightT/Tc , at t5tcoll) and of a pseudoscal
ing solution associated to an effective scaling expon
slowly converging toa52.

Let us illustrate quantitatively the time dependence ofa
52g. For example, taking arbitrarilyK51 ~the dependence
on K is weak and vanishes for largea), Eq. ~154! and
Eq. ~155!, respectively, lead tog(a5103)50.624 . . . and
3-15
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g(a5103)50.626 . . . , and to g(a5105)50.684 . . . and
g(a5105)50.674 . . . @note that the error between th
asymptotic expansion of Eq.~155! and the implicit expres-
sion first grows before slowly decaying fora@1012!#. Fi-
nally, for the maximum value ofa accessible numerically o
ordera;104, we expect to observe an apparent scaling
lution with g'0.65, ora52g'1.3.

D. Numerical simulations

In this section, we present direct numerical simulations
the Smoluchowski-Poisson system in 2D. Indeed, the th
dimensional case has been extensively studied in Ref.@1#. It
has been shown that the scaling function as well as the
rections to scaling~which have been calculated for the c
nonical ensemble in Ref.@1#! are perfectly described by th
theory. As the system behaves qualitatively the same for
dimensionD.2, we have decided to focus on the numeric
study of theD52 case only, which displays some very ric
behaviors, as exemplified in the present section.

We consider the system in the canonical ensemble, as
gravitational collapse does not occur in the microcanon
ensemble. In Fig. 10, we show the scaling function atTc , as
given by Eq. ~133!, finding a perfect agreement with th
numerical simulation. In Fig. 11, we also displa
a(da/dt)21 as a function of lna, and find an asymptotic
behavior fully compatible with that given by Eq.~139!.

Below Tc , and in the accessible range ofa ~up to a
;105), we find an apparent scaling regime witha52g
'1.3, as predicted in Sec. IV C. This is illustrated in Fig. 1
for T5Tc/251/8. Note that the effectiveg or a can also be
extracted from the time evolution ofa(t) or the central den-
sity @see Eq.~146!#. In Fig. 13, we show that this way o

FIG. 10. At T5Tc51/4, and when the central density ha
reached the value r(0,t)'1644.8 . . .5@a(t)11#/p @a(t)
'5166.3 . . . #, we have plotted the result of the numerical calcu
tion compared to our exact scaling formr(r ,t)5@a(t)11/p#@1
1a(t)r 2#22 obtained in Eq.~133!. The two curves are indistin
guishable as the relative error is, as predicted, of ordera21

;1024. Note finally that for this range of density, the density co
trast is huge, of order 107.
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measuringg is fully compatible with the value of the effec
tive exponenta52g'1.3.

V. THE ONE-DIMENSIONAL CASE

When an equilibrium state exists, there is little hope to
able to solve the full Smoluchowski-Poisson system anal
cally in order to study the relaxation towards equilibrium
We shall consider a simpler problem in which a test parti

-

FIG. 11. We plota(da/dt)21 as a function of lna, which is
predicted to behave asa(da/dt)21; ln a25/21O(@ ln a#21) @see
Eq. ~139!#. Even for the moderate range of accessible densi
(amax;5166), we clearly find that the numerical result evolves
ward the theoretical asymptotic~dashed line!.

FIG. 12. At T5Tc/251/8, we have extracted the next corre
tion to scalingrcor5r24TrT5Tc

, whererT5Tc
is defined in Eq.

~133!. We have then plottedrcor(r ,t)/rcor„r max(t),t… as a function of
x5r /r max(t), wherer max(t) is defined as the location of the max
mum of rcor(r ,t). Consistently with the apparent scaling observe
we found r max

21 (t);Aa;Arcor„r max(t),t…. For a52n213100 (n
51, . . . ,8), wehave obtained a convincing data collapse associa
to a52g'1.3, in agreement with the theoretical estimate ofg, in
this range ofa.
3-16
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evolves in a medium of field particles at statistical equil
rium. The particles are assumed to create astationarypoten-
tial Feq(r ) that induces a drift of the test particle along t
gradient ofFeq . In addition, the test particle is assumed
experience a diffusion process. Ifr denotes the density prob
ability of finding the test particle inr at timet, we expect the
evolution ofr to be determined by a Smoluchowski equati
of the form

]r

]t
5“~T“r1r“Feq!, ~156!

whereFeq(r ) is the solution of the Boltzmann-Poisson equ
tion ~11!. This means that we replace the true potential by
equilibrium value but still allow the densityr to vary with
time. As we shall see, it is possible to solve the Smo
chowski equation~156! analytically in D51 by using an
analogy with a problem of quantum mechanics. An equat
of the form ~156! has been proposed in Refs.@39,36# to
model the motion of a test vortex in a bath of field vortices
statistical equilibrium. In that context, Eq.~156! can be de-
rived from theN-body Liouville equation of the point vortex
gas by using projection operator techniques.

It is well known that a Fokker-Planck equation such
Eq. ~156! can be formally transformed into a Schro¨dinger
equation with imaginary time. Indeed, performing the chan
of variable

r5ce2(1/2T )Feq, ~157!

we find that the evolution ofc is determined by an equatio
of the form

]c

]t
5TDc1S 1

2
DFeq2

1

4T
~“Feq!

2Dc. ~158!

This can be written as a Schro¨dinger-type equation

FIG. 13. We plota21(da/dt);ag as a function ofa, in order to
extract the effective value ofg directly from the time evolution of
the central density. We find that the effectiveg is slowly growing
with time, as predicted, and is of orderg5a/2'0.65 ~the dashed
line has a slope equal to 0.65!, which is fully compatible with the
value extracted from Fig. 12, and the value expected from Eq.~154!
in this range ofa.
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]c

]t
5TDc2V~r !c, ~159!

with a potentialV(r )52 1
2 DFeq11/4T(¹Feq)

2. So far, this
transformation is general. If we now consider the on
dimensional case, the Boltzmann-Poisson equation~13! can
be solved analytically and the potentialV(r ) can be deter-
mined explicitly. Introducing the notationsj5ar /A2R and
t5a2Tt/2R2 and using Eq.~24! we can rewrite Eq.~158! in
the form

]c

]t
5Dc1S 2

cosh2j
21D c. ~160!

A separation of the variables can be effected by the subs
tion

c~j,t !5f~j!e2lt ~l>0!, ~161!

wheref is the solution of the ordinary differential equatio

d2f

dj2
12S E1

1

cosh2j
D f50, ~162!

where we have setl2152E. The solutions of this Schro¨-
dinger equation are described in detail in Ref.@40#. The spec-
trum of positive energies is continuous. The spectrum
negative energies is discrete and reduces toE0521/2 ~fun-
damental state!. The first excited state in the continuum
E150. We can check that the corresponding eigenfuncti
are f051/coshj and f15tanhj. In order to obtain the
qualitative behavior of the time dependent solution of E
~156!, we neglect the contribution from the continuum sta
with E.0, only keeping theE521/2 andE50 eigenstates.

Within this approximation and for sufficiently large time
we obtain

c~j,t!5
A

coshj
1B tanhj e2t ~t→1`!, ~163!

whereA andB are constant. Returning to original variable
we get

r~r ,t !5req~r !H 11C sinhS ar

A2R
D e2(a2T/2R2 )t1•••J ,

~164!

wherereq is given by Eq.~44! andC5B/A is a constant. We
find that the relaxation time is given byt relax52R2/a2T.

VI. CONCLUSION

In this paper, we have studied the Boltzmann-Poiss
equation and the Smoluchowski-Poisson system in vari
dimensions of space. Our study shows in particular how
nature of the problem changes as we pass fromD53 to D
52. We showed that the dimensionD52 is critical in the
sense that the results obtained forD.2 diverge if they are
naively extrapolated toD52. On a physical point of view,
3-17
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the two-dimensional problem differs from theD.2 case in
two respects: in the 2D case, the central density of the e
librium state is infinite at the critical temperatureTc while it
is finite at Tc in higher dimensions. On the other hand,
D52, the self-similar collapse results in a Dirac peak th
contains a finite fraction of mass, while forD.2, the mass
contained in the core tends to zero at the collapse time~but a
Dirac peak is always formed in the canonical ensemble a
tcoll as discussed in Appendix E!. We have also evidence
another characteristic dimensionD510 at which the nature
of the problem changes. ForD>10 the classical spiral be
havior of the caloric curve is lost. However, since the poi
on the spiral correspond to unstable states, which are th
fore unphysical, this transition atD510 is not so critical and
indeed the nature of the self-similar collapse does not sh
any transition at that dimension. It is interesting to note t
the dependence of the phase diagram in the (E,T) and (u,v)
planes with the dimension of spaceD shows some resem
blance to the dependence of the phase diagram of confi
polytropic spheres with the indexn of the polytrope@41#. An
extension of our study would be to relax the high frictio
limit and consider solutions of the Kramers-Poisson sys
and other relaxation equations described in Ref.@2#. These
equations are expected to display qualitatively similar beh
iors than those described here~i.e., gravitational collapse
finite time singularity, self-similar solutions, etc.!, but their
study appears to be of considerable difficulty since we n
need to consider the evolution of the full distribution fun
tion in phase space instead of its lowest moments. We h
to come to that problem in future publications.

APPENDIX A: ABSENCE OF GLOBAL ENTROPY
MAXIMUM IN THE MICROCANONICAL ENSEMBLE

In this appendix, we show the absence of global entro
maximum for a self-gravitating system in dimensionD.2.
To that purpose, we shall construct a particular family
distribution functions which conserves mass and energy
which increases entropy indefinitely. As we shall see, it
necessary in the microcanonical ensemble to separate
system between a core and a halo. We describe the core
the halo by a distribution function of the form

f 5
1

~2pT!D/2
re2v2/2T, ~A1!

where the densityr is assumed to be uniform in the core a
the halo. We denote byrc , Mc , Rc and rh , Mh , Rh the
density, mass, and radius of the core and the halo, res
tively. We assume, by construction, that the temperatureT is
uniform throughout the system. With the distribution fun
tion ~A1!, we easily find that the kinetic energy and the e
tropy defined by Eqs.~3! and ~5! can be written in each
domain as

K5
D

2
MT, ~A2!
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S5
D

2
M ln T2M ln r. ~A3!

Using Eq. ~33! and the Gauss theorem~30!, the potential
energy of a spherically symmetric distribution of matter c
be written as

W52
1

D22E0

R GM~r !

r D22

dM

dr
dr, ~A4!

for DÞ2. From this expression, we can easily compute
potential energy of the core and the halo. AssumingRh
@Rc ~see below!, we find that

Wc52
D

D224

GMc
2

Rc
D22

, Wh52
D

2~D22!

GMcMh

Rh
D22

2
D

D224

GMh
2

Rh
D22

. ~A5!

The total energy of the systemE5Ec1Eh is therefore given
by

E5
D

2
MT2

D

D224

GMc
2

Rc
D22

2
D

2~D22!

GMcMh

Rh
D22

2
D

D224

GMh
2

Rh
D22

. ~A6!

Let us first show the absence of global entropy maxim
in an unbounded domain. In that case, Eq.~A6! determines
the relation between the radius of the core and the radiu
the halo~for fixed E, T, Mc and Mh). We have thus con-
structed a particular family of distribution functions param
etrized by Rh that conserves the total mass and the to
energy. We now take the limitRh→1` that amounts to
expanding the halo to infinity. Since the potential energy
the halo decreases, the potential energy of the core m
increase so as to conserve energy. From Eq.~A6!, we see that
the radius of the core shrinks to a minimum radiusRc

min

given by ~we fix the temperature such thatE2(D/2)MT
,0 by construction!

Rc
min5F 2D

D224

GMc
2

E2
D

2
MTG 1/(D22)

. ~A7!

Therefore, the entropy of the core remains bounded whe
the entropy of the halo behaves like

Sh;2MhlnS Mh

Vh
D;DMhln Rh→1`. ~A8!

Therefore, forD.2, an unbounded self-gravitating syste
can always increase entropy by taking a ‘‘core-halo’’ stru
ture and by expanding the halo to infinity. To show heuris
3-18



c
i

e
he

-
ve

um
us

he

to

d
k

hi

a
It
on
ss
o

e

le.

y
the

e of

re

the
r-

ilib-
w-
a

in
xi-

xi-
n-

e

an
on-

ws

ical

be-
the

her
ing

of

-

THERMODYNAMICS AND COLLAPSE OF SELF- . . . PHYSICAL REVIEW E 66, 046133 ~2002!
cally that the separation between a core and a halo is ne
sary, let us consider the expansion of a uniform sphere w
radiusa. The equation

E5
D

2
MT2

D

D224

GM2

aD22
, ~A9!

determines the relation between the temperature and th
dius of the configuration for a given mass and energy. W
a→1`, the relation~A9! becomesE5(D/2)MT and can
only be satisfied ifE.0. In that case, the entropy~A3! di-
verges likeS;DM ln a→1`. However, for relevant situa
tions in whichE,0, this argument cannot be used to pro
the absence of global entropy maximum.

Let us now show the absence of global entropy maxim
for a self-gravitating system confined within a box of radi
R. We use the same distribution function as before withRh
5R. Equation~A6! now determines the relation between t
temperature and the radius of the core~for fixed E, Mc , Mh ,
andR). We take the limitRc→0 which amounts to shrinking
the core. Since the potential energy of the core goes
2`, the temperature must increase to1` in order to con-
serve the total energy. More precisely, using Eq.~A6!, we
have

T5
2

D224

GMc
2

MRc
D22

→1`. ~A10!

The entropy behaves like

S;
D

2
M ln T2MclnS Mc

Vc
D

;2
D

2
~D22!S Mh2

42D

D22
McD ln Rc . ~A11!

If Mh.(42D)/(D22)Mc , which can always be assume
by construction, the entropy diverges as the core shrin
proving the absence of global entropy maximum. T
simple argument shows the natural tendency~in a thermody-
namical sense! of a self-gravitating system to develop
dense and hot ‘‘core’’ surrounded by a low-density ‘‘halo.’’
has to be noted that the natural evolution in the microcan
cal ensemble isnot to create a Dirac peak with all the ma
concentrated atr 50. Indeed, let us consider the collapse
a homogeneous sphere of massM and radiusa. If we fix the
energy and leta→0, Eq. ~A9! shows that the temperatur
behaves like

T5
2

D224

GM

aD22
→1`. ~A12!

On the other hand, according to Eq.~A3!, the entropy be-
haves like

S;
D

2
M ln T2M lnS M

V D;2
D

2
~D24!M ln a.

~A13!
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If D,4, the entropy goes to2` as a→0. Therefore, the
formation of a Dirac peak, which would lead to adecreaseof
entropy, is not favorable in the microcanonical ensemb
This is the case in particular for the usual dimensionD
53. Equation~A11! shows that the divergence of entrop
requires that the mass contained in the halo is larger than
mass contained in the core. More precisely, the increas
entropy is maximum when only two particles~a binary! are
tightly bound in the core while the rest of the particles a
widespread in the halo~so thatMc!Mh;M ). These results
show that the ultimate fate of a self-gravitating system in
microcanonical ensemble is to form a tight binary su
rounded by a diffuse halo. In this sense, there is no equ
rium state for a self-gravitating system, even in theory. Ho
ever, as discussed in Refs.@37,42#, this process can take
very long time so that the system may be found in practice
a metastablestate corresponding to a local entropy ma
mum ~see Sec. II!. For D.4, the formation of a Dirac peak
leads to a divergence of entropy to1` so that the core-halo
structure is not necessary for entropy increase.

APPENDIX B: ABSENCE OF GLOBAL MAXIMUM
OF FREE ENERGY IN THE CANONICAL ENSEMBLE

In this appendix, we show the absence of global ma
mum of free energy for a self-gravitating system in dime
sion D.2 and forT,Tc5GM/4 in D52. Contrary to the
microcanonical ensemble, we donot have to separate th
system between a core and a halo. According to Eqs.~6!, ~9!,
and ~A9!, the free energy of a uniform sphere of massM,
radiusa and temperatureT ~fixed! is

J52M lnS M

V D1
D

D224

GM2

TaD22
, ~B1!

within an unimportant additional constant. Fora→1`, the
free energy behaves likeJ;DM ln a and diverges. This
proves the absence of global maximum of free energy for
unbounded self-gravitating system. If the system is now c
fined within a box of radiusR, we consider the limit of Eq.
~B1! for a→0 and find again thatJ→1` due to the diver-
gence of the potential energy. This simple argument sho
the natural tendency~in a thermodynamical sense! of a self-
gravitating system to develop a Dirac peak in the canon
ensemble for any dimensionD.2. This contrasts with the
microcanonical ensemble. The difference of behavior
tween microcanonical and canonical ensembles regarding
formation of a core-halo structure or a Dirac peak is anot
manifestation of ensemble inequivalence for self-gravitat
systems.

In two dimensions, we consider a homogeneous disk
massM and radiusa at temperatureT. It is easy to show that
the total energy~8! of this disk is

E5MT1 1
2 GM2~ ln a214!, ~B2!

with the conventionF;GMlnr at large distances. Accord
ing to Eqs.~6!, ~9! and ~B2!, its free energy reads
3-19
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CLÉMENT SIRE AND PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E66, 046133 ~2002!
J5M ln T2M lnS M

pa2D 2M2
GM2

2T S ln a2
1

4D . ~B3!

For a→0, the free energy behaves like

J;2M S 12
GM

4T D ln a. ~B4!

Therefore, if T,Tc5GM/4 the free energy goes to1`
when we contract the system to a point. This is sufficien
prove the absence of global maximum of free energy be
Tc : if sufficiently cold, the system has the tendency to cre
a Dirac peak. Note that forT.Tc , a true equilibrium state
~global maximum ofJ) exists.

APPENDIX C: SOME USEFUL IDENTITIES

In this appendix, we establish the identities~76! and~77!
that are needed in the stability analysis of Sec. II F. The fi
integral can be written after an integration by parts,

E
0

a

c8jDe2cdj52E
0

a

jD
d

dj
~e2c!dj

52aDe2c(a)1DE
0

a

jD21e2cdj. ~C1!

Using the Emden equation~13!, we obtain

E
0

a

c8jDe2cdj52aDe2c(a)1DaD21c8~a!. ~C2!

Introducing the Milne variables~25!, we get the identity
~76!. To establish the identity~77!, we start from the relation

E
0

aj (11D)/2c8

j

d

dj
~j (11D)/2c8!dj5aDc8~a!2

2E
0

aj (11D)/2c8

j

d

dj
~j (11D)/2c8!dj

1E
0

a

jD21~c8!2dj, ~C3!

which results from a simple integration by parts. Therefo

E
0

a

jD21~c8!2dj52aDc8~a!2

12E
0

a

j (D21)/2
d

dj
~j (11D)/2c8!c8dj,

~C4!

or, equivalently,

DE
0

a

jD21~c8!2dj5aDc8~a!222E
0

a

jDc9c8dj.

~C5!
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Using the Emden equation~13!, we find that

~D22!E
0

a

jD21~c8!2dj52aDc8~a!212E
0

a

jDc8e2cdj.

~C6!

Using Eq.~76! and introducing the Milne variables~25!, we
obtain the identity~77!.

APPENDIX D: H-THEOREM AND VIRIAL THEOREM

To prove theH theorem for the Smoluchowski-Poisso
system, we first take the time derivative ofS given by Eq.
~9!, substitute explicitly for Eq.~79! and integrate by parts
This yields

Ṡ5
D

2
M

Ṫ

T
1E 1

jr
~T“r1r“F!“rdDr . ~D1!

The conservation of energy~8! in the microcanonical en-
semble implies

Ė505
D

2
MṪ2E 1

j
~T“r1r“F!“FdDr , ~D2!

where we have used Eq.~79! and integrated by parts. Elimi
nating Ṫ between these two expressions, we obtain theH
theorem~80!. In the canonical situation in whichT is con-
stant, we take the time derivative ofJ5S2(1/T)E, substi-
tute explicitly for Eq.~79!, and integrate by parts. This yield

J̇5E 1

Trj
~T“r1r“F!2dDr>0, ~D3!

which is the form of theH-theorem in the canonical en
semble. S and J are the Lyapunov functionals of th
Smoluchowski-Poisson system.

To establish the form of the virial theorem for th
Smoluchowski-Poisson system, we first take the time der
tive of the moment of inertiaI defined by Eq.~83!, substitute
explicitly for Eq. ~79! and integrate by parts. We get

dI

dt
52E 2r

1

j
~T“r1r“F!dDr . ~D4!

Using the identity ~33! and introducing the pressurep
5rT, we obtain

1

2
j

dI

dt
52E r•“pdDr1~D22!W, ~D5!

or equivalently

1

2
j

dI

dt
52E “~pr !dDr1E p“•r dDr1~D22!W.

~D6!

The first term in the rhs can be converted into a surfa
integral. Using furthermore“•r5D, we find that
3-20
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1

2
j

dI

dt
52 R pr•dSD1DE pdDr1~D22!W. ~D7!

Assuming that the pressure is constant on the surface~which
is the case at least for a spherically symmetric distribution
matter in a spherical box! we can simplify the foregoing
expression as

1

2
j

dI

dt
52pb R r•dSD12K1~D22!W, ~D8!

where K5(D/2)MT is the kinetic energy. Converting th
first integral into a volume integral, using the divergen
theorem, we finally establish Eq.~82!.

APPENDIX E: THE CASE OF COLD SYSTEMS „TÄ0…

For T50, Eq. ~92! reduces to

]s

]t
5S r

]s

]r
1DsD s. ~E1!

Looking for a self-similar solution of the form~96! and im-
posing the conditions~98! and~100!, we find that the scaling
profile satisfies

xS81aS5~xS81DS!S. ~E2!

Of course, forT50, the exponenta cannot be determined
on dimensional grounds, as the definitionr 05AT/r0 is not
relevant anymore. As we will see,a will be determined by
imposing that the scaling solution is analytic. Equation~E2!
can be readily solved leading to the following implicit equ
tion for S:

S a

D
2S~x! D 12a/D

5KxaS~x!, ~E3!

whereK is an integration constant. Now, from the definitio
of S, we expect a smallx expansion of the formS(x)
5S(0)1 1

2 S9(0)x21O(x4), which first implies that

S~0!5
a

D
, ~E4!

and that (x2)12a/D;xa, which finally leads to

a5
2D

D12
and K5

D12

2 S 1

2 US9~0!U D D/(D12)

. ~E5!

In terms of the scaling functiong(x) associated to the mas
profile, Eq.~E3! can be rewritten as

g~x!5
2xD

D12
2

uS9~0!u
2 FD12

2
g~x!G (D12)/D

, ~E6!

whereS9(0),0 is arbitrary. This leads to the exact largex
asymptotic behavior
04613
f

g~x!;
2

D12 S 4

~D12!uS9~0!u
D D/(D12)

xD2/(D12).

~E7!

Moreover, usingf (0)5DS(0)/SD and Eq.~100! and ~E4!,
we get the exact universal asymptotic behavior of the cen
density

r~0,t !;SD
21~ tcoll2t !21. ~E8!

Finally, we note that the implicit equation~E6! can be writ-
ten as a parametric set of equations

g~y!5
2

D12
y, x~y!5Fy1

D12

4 US9~0!Uy(D12)/DG1/D

.

~E9!

These results can be obtained by a different, more ph
cal, method. We have indicated in Ref.@1# that, forT50, the
particles have a deterministic motion with equation

dr

dt
5u52“F. ~E10!

For a spherically symmetric system, this can be rewritten

dr

dt
52

M ~r ,t !

r D21
, ~E11!

whereM (r ,t) is the mass withinr. If a denotes the initial
position of the particle located atr at time t, we have

M ~r ,t !5M ~a,0!, ~E12!

so Eq.~E11! can be integrated explicitly in

r D5aD2DM ~a,0!t. ~E13!

If M (a,0) behaves like

M ~a,0!5A~aD2BaD12!1 . . . , ~E14!

close to the origin~which is a regular expansion!, then

M ~r ,t !5AaD~12Ba2! with r D5~12DAt!aD

1DABaD12t. ~E15!

Introducing the collapse timetcoll51/DA and considering
the limit t→tcoll , we obtain

M ~r ,t !5
aD

Dtcoll
with r D5

1

tcoll
~ tcoll2t !aD1BaD12.

~E16!

Introducing the scaling variables

x5
r

~ tcoll2t !(D12)/2D
, y5

1

tcoll
F a

~ tcoll2t !1/2GD

,

~E17!

we can put the solution in a parametric form
3-21
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CLÉMENT SIRE AND PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E66, 046133 ~2002!
M ~r ,t !5
1

D
~ tcoll2t !D/2y with x5~y1Cy(D12)/D!1/D,

~E18!

whereC is a constant. At the collapse timet5tcoll ,

M ~r ,t5tcoll!5
1

DCD/(D12)
r D2/(D12), r~r ,t5tcoll!

5
D

~D12!SDCD/(D12)
r 22D/(D12). ~E19!

These results are of course equivalent to those obtained
viously.

We can now use this method to study the evolution of
system for t.tcoll ~post-collapse solution!. For t5tcoll
1dt, according to Eqs.~E13! and~E19!, the mass contained
inside the sphere of radiusacoll5C21/2dt (D12)/2D at t
5tcoll has collapsed atr 50, resulting in a Dirac peak o
weight

M ~0,t !5
1

DCD/2
~ t2tcoll!

D/2. ~E20!

Note that in a bounded domain the final collapse to a cen
Dirac peak containing the whole mass occurs in a finite ti
tend after tcoll . For r .0 ~associated toa.acoll), one has

M ~r ,t !5M ~0,t !1
1

DCD/(D12)
~aD2/(D12)2acoll

D2/(D12)!,

~E21!

r D5aDF12S acoll

a D 2D/(D12)G . ~E22!

Introducing the scaling variables

x5
r

acoll
, y5S a

acoll
D D2/(D12)

21 ~E23!
c
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we obtain the self-similar solution

M ~r ,t !5M ~0,t !~11y! with x5~11y!D2/(D12)@12~1

1y!22/D!1/D. ~E24!

Subtracting the Dirac peak atr 50, and consideringx!1,
for which y;(D/2)xD, we find that the leading contribution
to the mass profile for smallr is

M ~r ,t !.'
r D

2dt
. ~E25!

Hence the density profile does not diverge atr 501 for t
.tcoll . Instead, the density approaches the constant val

r~01,t !5
D

2SDdt
, ~E26!

which decreases with time. The density profile is thus
pleted on a scaler;acoll;dt (D12)/2D, which increases with
time. For r @acoll , the density profile remains essential
unaffected.

In principle, the same phenomenon arises for any 0,T
,Tc : the density profile obtained attcoll ultimately col-
lapses into a central Dirac peak at a timetend.tcoll . This
solves the apparent paradox that the solution att5tcoll has a
vanishing central mass and a finite free energy. In fact, if
allow singular profiles to develop, the evolution continu
for t.tcoll and the Dirac peak with infinite free energy~pre-
dicted by statistical mechanics@23#! is formed during the
post collapse regime of our Brownian model.2 In practice,
degeneracy effects~of quantum or dynamical origin! lead to
a finite small core of finite density, controlled by the max
mum allowed degeneracy@37#.

2As discussed in Sec. II A, the results should be different in
microcanonical ensemble. We shall reserve the full description
the post-collapse regime for a future communication.
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